# **Exposure to Coastal and Fluvial Flood Hazards** in New Zealand

Ryan Paulik

National Institute of Water and Atmospheric Research





# Scene Setting: What is a Flood?

Flooding occurs when land that is <u>normally dry gets wet</u>.



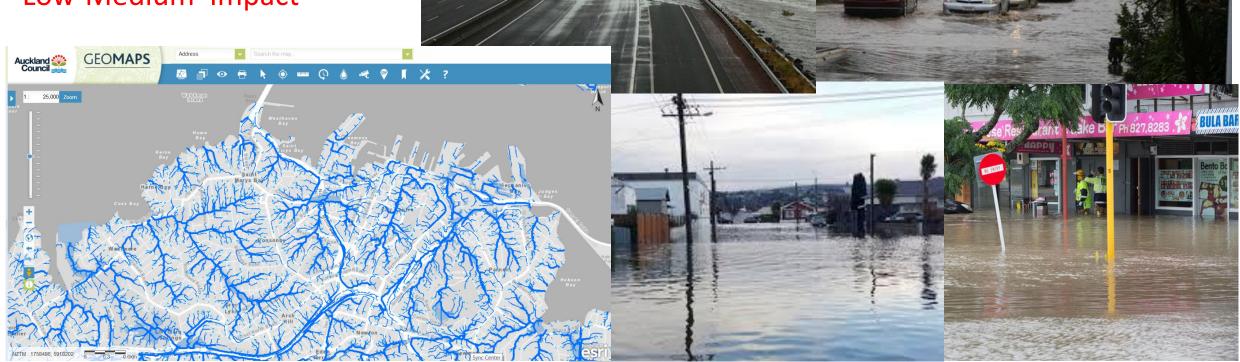
Stormwater (Pluvial) Flooding



Riverine (Fluvial) Flooding



Coastal Flooding: Storm-tides, Storm-Surge, Tsunami



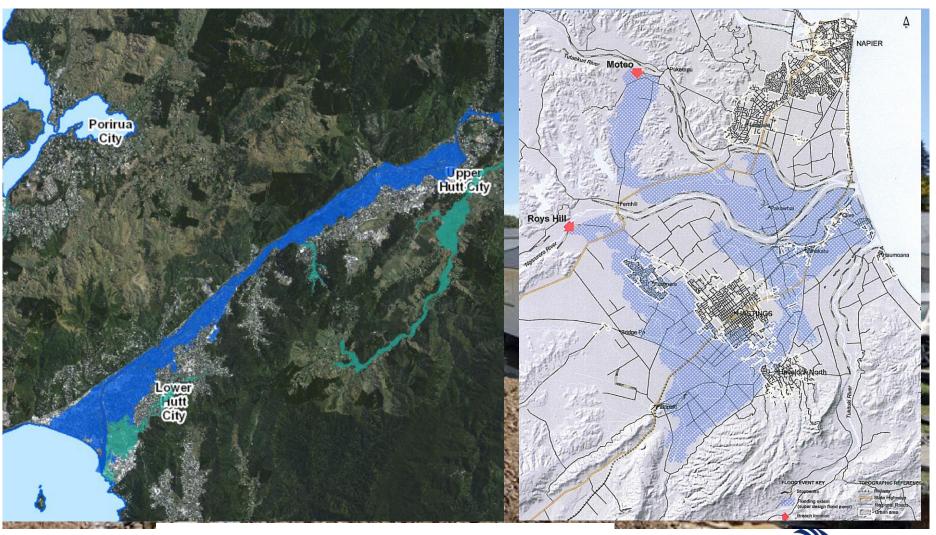



# What's ahead: Nuisance Flooding

Medium-High Frequency

Low-Medium Impact







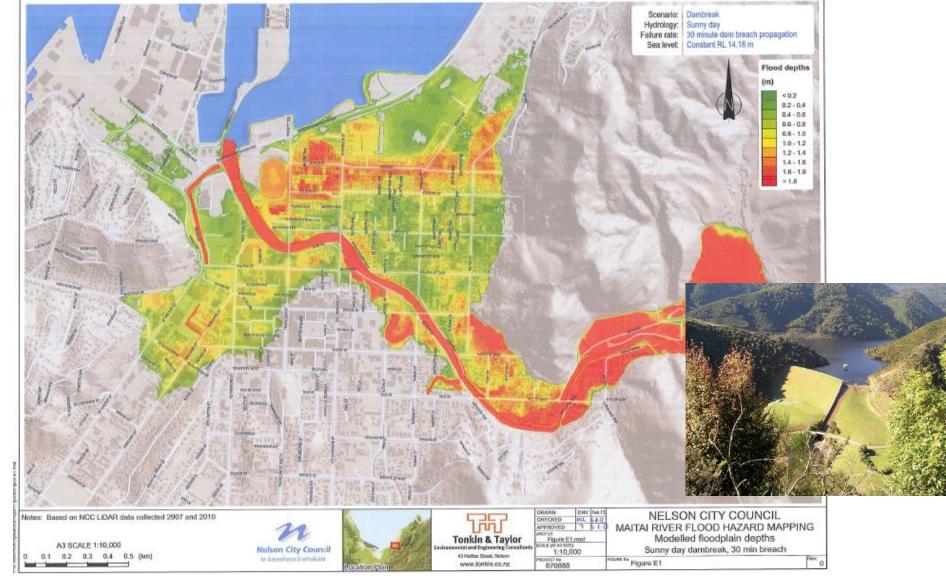

# What's ahead: Stopbank Failures

Low-Medium Frequency

Medium-High **Impact** 








THE DEEP SOUTH

# What's ahead: Dam Break Flooding

Low Frequency

**High Impact** 







# Deep South Challenge Impacts & Implications Research





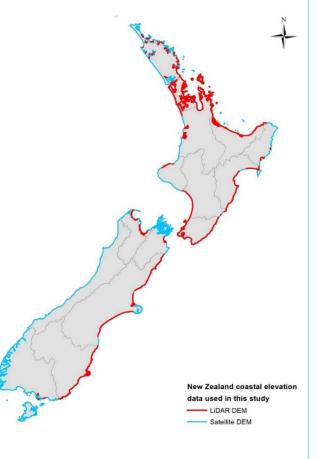
Coastal Flooding Exposure Under Future Sea-level Rise for New Zealand

Prepared for The Deep South Challenge



Prepared for The Deep South Challenge

https://www.deepsouthchallenge.co.nz/projects/national-flood-risks-climate-change





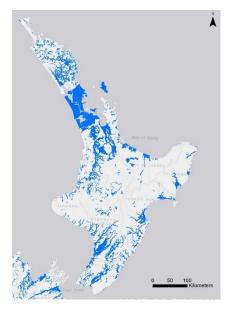

## **Coastal Flood Hazard Mapping**

New Zealand 1% AEP extreme sea-level flood hazard maps (ESL 1) for present-day MSL:

- Increments of + 0.1m
   SLR up to +3m.
- LIDAR DEM (31 Maps)
- Satellite DEM (1 Map)



# Fluvial/Pluvial Flood Hazard Mapping


New Zealand flood hazard area map (FLHA)

#### The FLHA combines:

- Modelled or historic flood hazard maps.
- Flood prone soil maps.

FLHA maps used were publicly available.

The FLHA maps represent a range of flood magnitudes and frequencies.







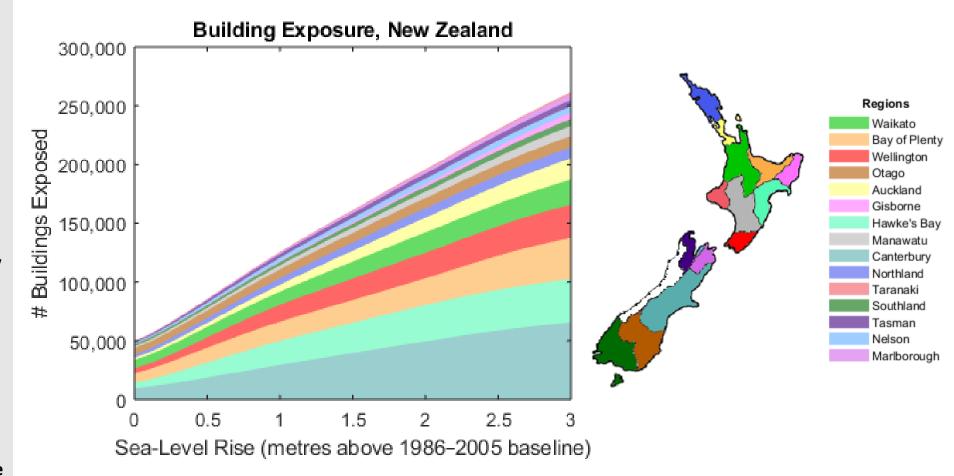


# National and Regional Coastal Flood Exposure - Buildings

#### **ESL1 Exposure Summary**

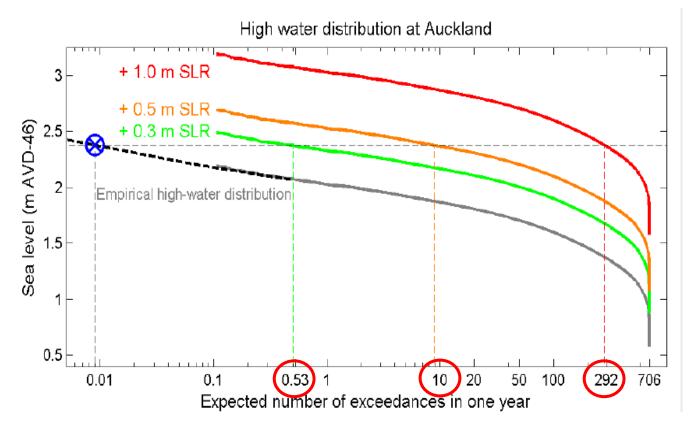
#### National

Current exposure is 49,709 (\$12.5 B) and increases by 7,043 and \$2.48 B for every +0.1 m SLR.


#### Regions

Over 10,000 buildings are each exposed in Canterbury, Bay of Plenty and Hawkes Bay at 0.4 m SLR.

Replacement values in Wellington and Canterbury increases by \$5 B each at 1 m SLR.


#### **Territories**

Christchurch (14,438) and Napier City (11,321) building exposure more than doubles with 0.5 m SLR.





# Exposure and Sea-Level Rise Projections (MfE, 2017)



| SLR<br>(m) | Year<br>RCP8.5H+<br>(83%ile) | Year<br>RCP8.5H<br>(50%ile) | Year<br>RCP4.5<br>(50%ile) | Year<br>RCP2.6<br>(50%ile) | Auckland<br>Building<br>Exposure |
|------------|------------------------------|-----------------------------|----------------------------|----------------------------|----------------------------------|
| 0          | -                            | -                           | -                          | -                          | 1,790                            |
| 0.3        | 2045                         | 2050                        | 2060                       | 2070                       | 2,719                            |
| 0.4        | 2055                         | 2065                        | 2075                       | 2090                       | 3,061                            |
| 0.5        | 2060                         | 2075                        | 2090                       | 2110                       | 3,420                            |
| 0.6        | 2070                         | 2085                        | 2110                       | 2130                       | 3,831                            |
| 0.7        | 2075                         | 2090                        | 2125                       | 2155                       | 4,316                            |
| 0.8        | 2085                         | 2100                        | 2140                       | 2175                       | 4,820                            |
| 0.9        | 2090                         | 2110                        | 2155                       | 2200                       | 5,371                            |
| 1          | 2100                         | 2115                        | 2170                       | >2200                      | 5,921                            |
| 1.2        | 2110                         | 2130                        | 2200                       | >2200                      | 6,559                            |
| 1.5        | 2130                         | 2160                        | >2200                      | >2200                      | 7,296                            |

https://www.mfe.govt.nz/publications/climate-change/coastal-hazards-and-climate-change-guidance-local-government



# National and Regional Fluvial/Pluvial Flood Exposure - Buildings

#### **FLHA Exposure Summary**

National

**Population = 674,534** 

**Buildings = 411,516 (NZD \$135 B)** 

Roads = 19,098 km

**Railways = 1,574 km** 

Airports = 20

Three-waters Pipes = 21,174 km

Note: These a order-of-magnitude estimates for the FLHA.

Auckland Population = **118,172** Northland Buildings = 48,167 (NZD \$27.6 B) 14,263 (NZD \$3.3 B) **Bay of Plenty** 13,450 (NZD \$3.3 B) Waikato 60,008 (NZD \$15 B) Gisborne 11,804 (NZD \$2.3 B) Manawatu-Whanganui 25,206 (NZD \$5.2 B) Nelson **Hawkes Bay** 6,873 (NZD \$2.1 B) 13,942 (NZD \$3.5 B) Wellington **Tasman** Population = **77,675** 11,072 (NZD \$2.8 B) Buildings = 43,360 (NZD \$13.8 B) Marlborough **West Coast** 3,760 (NZD \$1 B) 11,072 (NZD \$1.5 B) **Canterbury** Population = **188,055** Buildings = 116,713 (NZD \$40 B) Southland 13,118 (NZD \$4.2 B) **Otago** 21,684 (NZD \$4.2 B)

Climate, Freshwater & Ocean Science

# Fluvial/Pluvial Flood Impacts on Buildings

New Zealand currently lacks a flood loss database for investigating building vulnerability.

Flood events provide opportunities to observe building damage response to flooding.









Climate, Freshwater & Ocean Science

# Opportunities to Inform Future Flood Adaptation

- Spatial mapping technology is constantly improving the ability to identify future flood hazards and at risk buildings.
- The challenge now is collect more detailed information about floodplain buildings and assess the potential direct and indirect impacts from future flood events.
- Risk researchers and construction experts can team-up and investigate building vulnerability to flood damage and quantify future impacts across New Zealand.
- The ability to quantify direct building impacts will improve our ability to make risk informed adaptation decisions on building construction within or near floodplains.



### Thank you

For more information please contact:

Ryan Paulik (NIWA)
ryan.paulik@niwa.co.nz





THE DEEP SOUTH